Package: stepmixr 0.1.2

Charles-Édouard Giguère

stepmixr: Interface to 'Python' Package 'StepMix'

This is an interface for the 'Python' package 'StepMix'. It is a 'Python' package following the scikit-learn API for model-based clustering and generalized mixture modeling (latent class/profile analysis) of continuous and categorical data. 'StepMix' handles missing values through Full Information Maximum Likelihood (FIML) and provides multiple stepwise Expectation-Maximization (EM) estimation methods based on pseudolikelihood theory. Additional features include support for covariates and distal outcomes, various simulation utilities, and non-parametric bootstrapping, which allows inference in semi-supervised and unsupervised settings.

Authors:Éric Lacourse [aut], Roxane de la Sablonnière [aut], Charles-Édouard Giguère [aut, cre], Sacha Morin [aut], Robin Legault [aut], Félix Laliberté [aut], Zsusza Bakk [ctb]

stepmixr_0.1.2.tar.gz
stepmixr_0.1.2.zip(r-4.5)stepmixr_0.1.2.zip(r-4.4)stepmixr_0.1.2.zip(r-4.3)
stepmixr_0.1.2.tgz(r-4.4-any)stepmixr_0.1.2.tgz(r-4.3-any)
stepmixr_0.1.2.tar.gz(r-4.5-noble)stepmixr_0.1.2.tar.gz(r-4.4-noble)
stepmixr_0.1.2.tgz(r-4.4-emscripten)stepmixr_0.1.2.tgz(r-4.3-emscripten)
stepmixr.pdf |stepmixr.html
stepmixr/json (API)

# Install 'stepmixr' in R:
install.packages('stepmixr', repos = c('https://labo-lacourse.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/labo-lacourse/stepmixr/issues

On CRAN:

3.60 score 1 stars 5 scripts 227 downloads 18 exports 12 dependencies

Last updated 7 months agofrom:ca9cc62cb1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:bakk_measurementsbootstrapbootstrap_statscheck_pystepmix_versiondata_bakk_completedata_bakk_covariatedata_bakk_responsedata_gaussian_diagdata_generation_gaussianfitidentify_coefinstall.stepmixloadfitmixed_descriptorpredict_probarandom_nansavefitstepmix

Dependencies:herejsonlitelatticeMatrixpngrappdirsRcppRcppTOMLreticulaterlangrprojrootwithr

Readme and manuals

Help Manual

Help pageTopics
Non-parametric bootstrap of StepMix estimator.bootstrap bootstrap.stepmix.stepmix.StepMix
Non-parametric boostrap of StepMix estimator.bootstrap_stats bootstrap_stats.stepmix.stepmix.StepMix
Series of function to simulate data.bakk_measurements data_bakk_complete data_bakk_covariate data_bakk_response data_gaussian_diag data_generation_gaussian random_nan
Fit a mixture using the stepmix python package.fit identify_coef print.stepmix.stepmix.StepMix
Install stepmix python package into python via reticulate.check_pystepmix_version install.stepmix
Utility function for mixture using mixed description.mixed_descriptor
Predict the membership (probabilities) using the fit of the stepmix python package.predict.stepmix.stepmix.StepMix predict_proba predict_proba.stepmix.stepmix.StepMix
Save the fit of a mixture using the stepmix python package.loadfit savefit
R interface to stepmix in StepMix python.stepmix